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This paper is concerned with oscillations of a body of water in basins of variable depth, 
employing a system of linearized equations which can be obtained from the theory 
of a directed fluid sheet for an incompressible, homogeneous, inviscid fluid (Green & 
Naghdi 1976a, 1977). For free oscillations over a level bottom, an assessment of the 
range of validity of the linearized theory is made by an appropriate comparison with 
a corresponding well-known exact solution (Lamb 1932). This assessment indicates 
an ‘intermediate’ range of validity for the linearized theory not covered by usual 
classical approximations for long waves. Encouraged by this assessment, we apply 
the linear theory of a directed fluid sheet to basins of variable depth; and, in 
particular, consider a class of basin profiles whose equilibrium depth (along its width) 
varies in one direction only. By a method of asymptotic integration, a general solution 
is obtained which is relatively simple and accounts for the effect of vertical inertia. 
The solution is sinusoidal in time, periodic along the breadth direction and involves 
Bessel functions of the first order in the width direction. For two special basin profiles, 
detailed comparisons are made between the predictions of the asymptotic solution 
(i.e. the frequencies in the lowest modes of oscillations) with corresponding results 
obtained by other procedures. 

1. Introduction 
This paper is concerned with small-amplitude, free-surface oscillations over basins 

of variable depth. Particular attention is given to oscillations over a class of basins 
whose plan view is rectangular and whose equilibrium depth varies in one direction 
only. A description of such a basin is given in the fist paragraph of 92 and a sketch 
of a basin of this kind in the (z,z)-plane of the rectangular Cartesian coordinates 
(x, y, z )  with its equilibrium height varying with z is shown in figure I .  

In the development that follows, we utilize the linearized version of the differential 
equations of the restricted theory of a directed fluid sheet for an incompressible, 
homogeneous, inviscid fluid in the form derived by Green & Naghdi (1976a, 1977). 
The development of the basic equations of this theory are based on a simple physical 
model whose main kinematical ingredients may be viewed as corresponding to an 
assumption for the velocity v* in the three-dimensional theory such that the 
horizontal components of u* are independent of z and its vertical component is linear 
in z (Green & Naghdi 1976b). Moreover, the mode of derivation in the direct approach 
(Green & Naghdi 1976a, 1977) is substantially different from standard procedures 
in which approximate theories are obtained from the three-dimensional equations of 
fluid dynamics by different procedures. Because of this, it is worth emphasizing that, 
in the context of the topic discussed here, important features of the direct approach 
(for construction of an approximate theory) are (i) the satisfaction of the conservation 
of mass and linear momentum (in the three-dimensional theory), if not pointwise, at 
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I 0 
x = const. 

FIQURE 1. A sketch of a basin containing a fluid of variable depth showing its vertical cross-section 
perpendicular to y-direction of the fixed rectangular Cartesian coordinates (5, y, z )  with origin a t  
the lowest elevation point of the basin. Also indicated is the vertical location Po of the undisturbed 
level of the top free surface of the fluid (shown by a horizontal dashed line), the vertical location 
a of the bottom surface of the fluid, the equilibrium depth h = &,-a of the fluid a t  the location 
(-5) and a characteristic length I ,  in the undisturbed free surface. 

least in the sense of suitable weighted averages of these conservation laws, and (ii) 
the satisfaction of the surface (or boundary) conditions at  the top and bottom surfaces 
of the fluid sheet in terms of the assumed kinematics. 

Intuitively, one might expect that an approximate linear theory such as that of 
a directed fluid sheet (Green & Naghdi 1976a, 1977) - which restricts the director 
to remain parallel to a fixed direction for all time - would be applicable only to 
situations in which the value of a parameter ,u = Zo/po (see figure 1)  is large and all 
horizontal gradients are small compared to vertical gradients. However, as will be 
discussed presently, certain aspects of the theory pertaining to the prediction of the 
wave height and the frequency of oscillation (or the dispersion relation) are much 
better than one would at  first suppose and ,u need not necessarily be large. In order 
to assess the nature of this contention, from the linear theory of a directed fluid sheet 
we obtain a dispersion relation, and by comparison of this with a corresponding exact 
dispersion relation given by Lamb (1932, p. 440) demonstrate that the theory of a 
directed fluid sheet has an ‘intermediate’ range of validity beyond the classical 
approximation for long waves. 

Preparatory to this task and by way of background, we note that the linearized 
equations of a directed fluid sheet for an incompressible, homogeneous, inviscid fluid 
(Green & Naghdi 1976a, 1977) are reduced in $2 to a system of partial differential 
equations for the determination of the horizontal velocities u, v [see (2.13a, b ) ] .  When 
the motion is confined to the (x, %)-plane (with v = 0) ,  this system reduces to a 
differential equation in u (see (2.14)) which in the case of a level bottom reads as 

utt - ghu,, - yPuttzz = 0. (1.1) 

In ( l . l ) ,  the equilibrium depth h = constant, u is the horizontal velocity of the fluid 
in x-direction, g is the constant gravitational acceleration, t denotes time and 
subscripts indicate partial differentiation. In the absence of the effect of vertical 
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inertia and with the pressure regarded only as hydrostatic, (1.1) reduces to that of 
the classical shallow-water theory for long-wave approximation (Lamb 1932, arts 
189 and 193). 

1.1. An assessment of the range of validity of the linearized theory 
For time-harmonic oscillations with constant frequency w ,  a comparison of dispersion 
relations obtained from (1.1) and the corresponding linearized KdV (Korteweg & de 
Vries 1895) and BBM (Benjamin, Bona & Mahony 1972) equations was given 
previously (Green, Laws & Naghdi 1974). Here we take up the matter further and 
note that the dispersion relation calculated from (1.1) is 

where c is the phase velocity and k is the wavenumber. From (1 .2) ,  which holds over 
a level bottom, by taking the limit as k - t m ,  it  follows that there exists a cutoff 

39 
h '  

frequency w, given by 
= - (1.3) 

Alternatively, this cutoff frequency can be obtained directly from (1.1) as a condition 
for the existence of oscillatory solution. In  fact, the existence of a cutoff frequency 
is a characteristic feature of all linear approximate theories of the type under 
discussion which include (at least partially) the effect of vertical inertia. This is in 
contrast to the classical shallow-water equation, which does not include vertical 
inertia and has no cutoff frequency. 

We now recall from Lamb (1932, art. 257, p. 440) the exact solution for the free 
oscillation of a limited mass of water in a basin of uniform depth. The frequencyt 
w* (corresponding to in equation (4) of Lamb 1932, p. 440) is given by 

(1.4) g 
h 

w*' = - kh tanh kh, 

where the wavenumber k is related to the wavelength A* by 

2x k = -  
A*' 

We now ask for what value of the wavelength in the exact theory (say for A* = A:) 
associated with (1.4) is the frequency w* equal to the cutoff frequency w, given by 
(1.3) ? In  order to answer this, we set 

(1.6) 
g g w*2 = w; * - k h  tanhkh = 3 - ,  
h h 

from which (since tanh 3 N 1) we obtain kh N 3. Hence, from (1 3) we have 

(1.7) 
* 2x h, = - N 2.09, 

h 3  

and we may conclude that : 
(i) For A* < A:, w* 2 w, and the prediction of the theory of a directed fluid sheet 

is out of the range of the exact theory. 

t The use of the notations w* (and also A * )  for frequency (and for wavelength) for the exact 
solution is to avoid confusion with the corresponding notations (0, A )  in the present paper. 
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(ii) For A* > A:, w* < w, and the prediction of the theory of a directed fluid sheet 

Clearly the lower bound for the wavelength h in the theory of a directed fluid sheet, 
obtained from (1.6) and given by (1 .7) ,  is significantly different from the assumption 
(h*/h) 9 1 ,  usually associated with the classical theory (Lamb 1932) for long waves. 

In addition to the observation concerning the range of validity of the approximate 
theory used in the present paper, it is also informative to provide a further discussion 
of the approximate dispersion relation (1.2) and the corresponding dispersion relation 
from the exact theory (Lamb 1932, p. 440). Making use of power-series expansion, 
the dispersion relation from the exact result (1.4) can be written as 

is within the range of the exact theory. 

C - (1 - ! j ( I ~ h ) ~ + & ( k h ) ~ -  ...};, ot- 
while the corresponding expression from (1 -2) is 

C - (1 - i (kh)2 - . . .};. ot- 
The first term on the right-hand side of both (1.8) and (1.9) represents the value 
appropriate for long waves and is the same also for the leading term in the power- 
series expansion of the dispersion relations of other approximate equations such as 
those of the KdV and the BBM. An examination of the second terms on the right-hand 
sides of (1.8) and (1  9) immediately reveals that the dispersion relation (1.9) of the 
theory of a directed fluid sheet is a truncation of the second-order term of the exact 
dispersion relation and as such is much closer to the exact theory than either the KdV 
or the BBM dispersion relations. Even for a fairly short wavelength (h*/h)  = 2.5, the 
percentage difference for the prediction of c/(gh)i  from the dispersion relation (1.2) 
and the exact dispersion relation (1.4) is less than 10 yo. 

1.2. The scope of the paper 
The main purpose of the present paper is to obtain a fairly general solution of the 
problem of free-surface oscillations over basins of variable depth, which would include 
the effect of vertical inertia and which would remain valid also at an end point of 
the basin, while the basin’s profile is left unspecified. The discussion in $ 1.1 clearly 
indicates an ‘intermediate’ range of validity for the application of the linear theory 
to fluid motions over a level bottom, and one would expect that a similar ‘ intermediate ’ 
range of validity holds also for a variable bottom. In this connection, it should be 
noted that a cutoff frequency of the same form as (1.3) exists also for variable 
bottoms, but with the constant h replaced with hma,, i.e. 

9 
WE = 3-. 

hmax 
(1.10) 

Again, this is a characteristic feature of the differential equations ((2.13) and (2.14)) 
for variable h to be introduced subsequently; and this feature persists throughout 
the solutions obtained in $13 and 4 and is further discussed in $5. 

A quantitative assessment of the nature of linear theory with variable bottom is 
undertaken for two special basin profiles in $3, with the use of the differential 
equations of $2 for variable bottoms. In particular, for two-dimensional fluid motions 
in the (vertical) (z,z)-plane, we obtain series solutions for two symmetric basin 
profiles, one with a triangular bottom shown in figure 2 and another with a parabolic 
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FIGURE 2. A sketch of a basin of constant slope whose cross-section (in the (z,z)-plane) is 
symmetrical about the z-axis and consists of two straight lines. Also indicated is the angle 19 which 
each line makes with the horizontal, the half length 1, in the undisturbed free surface, as well as 
several other quantities identified in the caption of figure 1 .  

bottom. In each case, we calculate the frequencies for the lowest antisymmetric and 
symmetric modes which are obtained from the first three orders of approximation 
(in the square of the frequency) of the series solutions. As might be expected, the 
results of the first approximations for both bottom profiles are the same as those of 
the classical results in which the effect of vertical inertia is neglected. Keeping this 
in mind, the results of the second and third approximations in the series solutions 
are then compared with those predicted by the first approximations, as well as the 
two known exact solutions (corresponding to the special values of angle 0 in figure 2, 
i.e. 0 = in, in) for a triangular bottom due to Kirchhoff (1879) and Greenhill (1887) 
and a recent solution for a parabolic bottom obtained by Miles (1985) with the use 
of a variational approximation procedure. 

In the rest of the paper ($$4, 5), attention is confined to a basin whose plan view 
(the (2, 9)-plane) is rectangular. Thus, for a fairly general class of basin profiles whose 
equilibrium depth varies with one coordinate (in the 2-direction) along the basin 
width, free oscillations of a body of water in the basin are considered in $4. These 
oscillations are sinusoidal in time and periodic (in the y-direction) along the breadth. 
By a method of asymptotic integration due to Langer (1935), a general oscillatory 
solution is obtained for the class of basin profiles mentioned above. The resulting 
solution has a relatively simple form and involves Bessel functions of the first order 
in the width direction [see (4.3), (4.7) and (4.11)]. 

We conclude the present paper with some calculations and remarks pertaining to 
applications of the general solution of $4. In particular, in $5 we again consider the 
free-surface oscillations in the (2, 2)-plane of two symmetric basins with triangular 
and parabolic bottom profiles. For each of these two profiles, by application of the 
asymptotic solution of $4, we calculate the lowest frequencies in both the anti- 
symmetric and symmetric modes. The results of these calculations agree rather well 
with those obtained from the third approximations in the series solutions ($3) even 
in the non-shallow range of values of the ratio ,u = lo//3,, in figure 1. A summary of 
all numerical calculations, including those obtained in $5, are tabulated in tables 1-5 
of $3. The close agreement in the important case of the lowest antisymmetric mode 
between the frequencies calculated from the asymptotic and third approximation 
(series) solutions are particularly noteworthy (see tables 1 and 4). 

Finally, it  may be noted that, while the developments of this paper are particularly 
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significant when the parameter p is not necessarily large, the results obtained may 
also be of interest for seiches over basins of variable depth. Although ordinarily the 
seiche problem is associated with free-surface oscillations when p is large (Wehausen 
& Laitone 1960; Wilson 1972; Csanady 1975), in higher modes of oscillations the 
frequency becomes progressively larger so that for a given mode it depends on both 
the parameter p and the mode number in question. This should be evident from the 
exact solution of the classical shallow-water theory for a parabolic bottom given by 
Lamb (1932, p. 277, equation (18)), where the frequency (in our notation) has the 
form 

n being the mode number. 

2. Statement of the problem. Differential equations for the linearized 
theory 

Consider a basin of variable depth and suppose that it contains an inviscid, 
homogeneous, incompressible fluid. Let the basin be referred to a fixed system of 
rectangular Cartesian coordinates xi = (5,  y, z) ,  with associated orthonormal base 
vectors e, = (e l ,  e2, e3), i = 1,2 ,3 .  Choose the origin of the coordinate system at the 
lowest elevation point of the basin, with the z-axis directed upward (figure 1) and 
the ( x ,  y)-plane of the coordinate system parallel to the free surface in the undisturbed 
(equilibrium) state. 

We are concerned here with the small-amplitude oscillations of the fluid in the basin 
under the action of gravity but we neglect the effect of surface tension. Let the bottom 
surface of the fluid in contact with the basin be specified by the equation 

(2.1) 

I = “el+Ye,+B(x,y,t)e,, (2.2) 

= xel + y e ,  + a(5, y) e3? 

and the top free surface of the fluid by 

where a is a given function of x ,  y, but /3 is unknown and must be determined from 
the solution of the problem. Further, at any section x = constant (see figure i), h 
denotes the equilibrium height, 

is the value of h at x = 0 ,  1, is a characteristic length of the free surface in equilibrium 
state, and 8- (a+ h) represents the amplitude of motion in the present configuration 
at  time t .  At the surface (2.2) of the fluid there is only a constant normal pressure 
po  (since surface tension is neglected), while at the bottom surface (2.1) of the fluid 
in contact with the basin the unknown pressure j j  depends on x ,  y and t .  

We employ the linearized system of differential equations which follows from that 
derived in the context of a restricted theory of a Cosserat (or a directed) fluid sheet 
by Green & Naghdi (1976a, 1977). In the interest of clarity, we recall that a Cosserat 
or a directed surface ‘3 comprises a material surface and a director assigned to every 
point of the material surface. Let the particles of the material surface of V be 
identified with a system of Lagrangian coordinates 8“ (a = 1,2) and let the surface 
occupied by the material surface in the present configuration of ‘3 at time t be referred 
to as 4. Let r and d denote the position vector of a typical point of CI and the director 

P o  = hmax (2.3) 
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at the same point, respectively. Then, with reference to the rectangular Cartesian 
coordinate system introduced earlier, a motion of the directed surface % may 
conveniently be expressed in the form 

r = ze,+ ye,+$e,, d = $e3, (2.4a, b)  

where x, y ,  $, $ are functions of 19, t .  The specification of the form (2.4b) can always 
be made in one configuration even in the context of a more general theory of a directed 
fluid sheet; but the director will not necessarily remain parallel to e3 throughout the 
motion. However, the theory used here (Green & Naghdi 1977) restricts the director 
to remain parallel to a fixed direction for all time. In view of the representations 
(2.4a, b) ,  the velocity tr = f and the director velocity w = h can be written as 

v = ue,+ve,+he,, w = we3, (2.5a, b)  

where u=x, y = y ,  A = + ,  w = 4 ,  (2.6a, b, c, d )  

and where a superposed dot denotes the material time derivative holding B" fixed. 
Green & Naghdi (1976b) have shown that the system of nonlinear differential 

equations of the restricted theory of a directed fluid sheet (Green & Naghdi 1976a, 
1977) can also be derived from the three-dimensional theory by approximating the 
position vector of the (three-dimensional) continuum in the form 

p* = r+03+e,, (2.7) 

where O3 is a third convected (Lagrangian) coordinate. Corresponding to the values 
O3 = *+ the expression (2.7) locates the bottom and top surfaces (2.1) and (2.2) of 
the fluid, respectively. In fact, the quantities $ and + are related t o p  and a by (Green 
& Naghdi 19763) 

$ = +(p+a), #J = p-a. (2.8) 

In the context of the linearized theory, it can be shown that the velocity 
components w and h are related to u, v and their partial derivatives by the expressions 

w=-h(u ,+~ , ) ,  h =!p-(h,u+h,V), (2.9a, b)  

where h = Po - a is the equilibrium depth of the water (see figure 1) .  Then, the relevant 
system of linearized differential equations for incompressible homogeneous inviscid 
fluid sheets resulting from the condition of incompressibility and the equations of 

motion are given by $t = - ( W x -  W,? (2.10) 

p*hut =-p,+h,p,, p*hv, =-p,+h,p, (2.11a, b)  

p*hht = p-p*g$, &p*h2wt = p-+hji-+p*gh$. (2.12a, b )  

Some of the symbols in the above equations were defined previously in 5 1 .  Others 
are defined as follows: 

p* = the mass density of the fluid. 
$ = the amplitude of the motion of the free surface of the water. 
ji = pressure in the fluid at its bottom surface. 
p = the Lagrange multiplier, i.e. an arbitrary function of position and time. 

For later use, we reduce the system o f  differential equations (2.10)-(2.12) to a system 
of two partial differential equations in the variables u and v. Thus, introducing (2.9a, b)  
into (2.12a,b), we obtain two equations for p and p which when substituted into 
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(2.11a, b)  result in two equations involving u, v and q5. Next, with the help of (2.10), 
elimination of q5 leads to the following two partial differential equations in u and v: 

[ (I  -W,,) U - - h z % - ~ h 2 ~ z , l t t  -g(hu)z, 

“1 - @,,) v - hh, vy - w J y , l t t  - dhv),, 

= g(hv),,+ l~hh,,v+~hh(h,v,+h,v,)+ ~hh2vzy]tt ,  ( 2 . 1 3 ~ )  

= g(hu),,+ [~hhh,,u+~h(h,u,+h,u,)+ $’u,,]~~. (2.13b) 

The above equations simplify considerably in the special case for which the fluid 
motion is confined to  the (vertical) (2, 2)-plane. I n  this case, since the velocity IJ in 
the e,-direction is zero, all kinematical variables depend on 2, t only and (2.13a, b)  
reduce to  the single differential equationt 

(1  -W,,) Utt - hh, U t t z - i h Z U t t z 2  = g(hu),,. (2.14) 

The differential equations (2.13a,b), and hence also (2.14), include the effect of 
vertical inertia within the scope of the approximate theory employed here. This effect 
is entirely absent in the corresponding classical results as discussed by Lamb (1932, 
arts 189 and 193). For example, in the special case in which the motion is confined 
to  the (vertical) (2, 2)-plane, after the neglect of vertical inertia an equation involving 
u corresponding to (2.14) is given by 

Utt = g(hu),,. (2.15) 

While the right-hand side of (2.15) is the same as the right-hand side of (2.14) the 
left-hand side of (2.15) is considerably simpler than the left-hand side of (2.14). I n  
the next section, with the use of (2.14) we examine free-surface oscillations of two 
symmetric basin profiles with the objective of providing some insight regarding the 
predictive capability of (2.14) in comparison with that of (2.15). 

3. Two-dimensional free-surface oscillations for special basin profiles 
Our aim in this section is to provide a quantitative assessment of the nature of 

the approximate theory characterized by the differential equation (2.14) and hence 
also by (2.13a, b ) ,  as well as comparison of the numerical results with the asymptotic 
solution of $4. For this purpose, we consider free-surface oscillations in the (2, 2)-plane 
for two symmetric basin profiles, namely ( 1 )  a basin with a triangular bottom whose 
sides of constant slope make an angle 0 with the horizontal (see figure 2) and (2) a 
basin with a parabolic bottom. The solution obtained in the former case, for the two 
special values of the angle 0 = $ and B = $, can then be compared with the known 
exact solutions (Lamb 1932, art. 258) mentioned in $ 1 .  Similarly, in the case of a 
parabolic bottom, comparison is made with a corresponding recently obtained result 
given by Miles (1985) who has dealt with this problem by an  entirely different 
approach. 

Before turning to our objective in this section, we assume a solution of the form 

u = I J ( 2 )  cosot, (3.1) 

t This differential equation for fluid motions in the (x, 2)-plane follows also from one obtained 
previously by Green & Naghdi (1976b, equation (5.7)), which includes the effect of surface tension. 
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where the frequency w is a constant. Then, after substitution of (3 .1)  in (2.14) we 
obtain an ordinary differential equation in U given by 

(3 .2)  h(3a-h) Uz,+3h,(2a-h) U,+3[1 +th,,(2a-h)] U = 0, 

where the constant a is defined by 
9 a=- .  

w2 
(3 .3)  

3.1. A triangular basin 
Consider a symmetric triangular basin whose bottom may be described by (see also 

(3.4) 

where the maximum equilibrium height 16, is defined by (2.3) and 1, is now the half 
length in the undisturbed free surface in the 2-direction. Since a(%) is symmetric with 
respect to the z-axis, in the analysis that follows it will suffice to consider only one-half 
of the basin. Thus, with a(z) specified by the first of (3 .4) ,  the equilibrium height h(x) 
of the basin, as well as its first two derivatives, are 

h(x) = Po ( 1  + ;) = Po( 1 + 7 ), - 1, < 2 < 0, ( 3 . 5 ~ )  

h, = B,/l,,  h,, = 0, (3.5b) 
0 

where for later convenience we have also introduced a dimensionless variable 

X 
?I=-.  

10 

Substitution of (3.5) in (3.2) results in 

( l ,+x)[3ap+(Z0+x)]  U,,+3[2ap-(Z0+x)] U,+3p2U = 0, (3.7) 

where we have introduced the parameter 

and (3 .9a,  b )  

The parameter p defined by (3.8) may be regarded as a measure of shallowness of 
the basin and the constant a in (3.9b) represents a dimensionless frequency. By a 
change of the independent variable, namely 6 = (Z0+x)/(3ap) = &P( l  +?I), (3.7) can 
be reduced to the form 

E(1-6) Ug-(2 -36)  U6+3p2U= 0, 

which is a special case of the standard hypergeometric equation (Abramowitz & 
Stegun 1965, pp. 562-563; compare with entry 15.51 after identifying a + b  = 2,  
ab = -3p2, c = 2 ) .  Of the two linearly independent solutions of the hypergeometric 
equation only one remains bounded everywhere, and the other (being proportional 
to  f ' )  becomes unbounded as ( - + O  (or x+-Z,) .  Since we require the velocity (and 
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hence U )  to remain bounded, the desired solution for u in terms of a hypergeometric 
function (F(a ,  b,  c ;  c )  is given by 

u(q,t) = C F ( a , b , ~ ; $ 2 ~ ( 1 + q ) )  coswt, (3.10) 

where C is a constant and the temporary notation a, b, c, in the arguments of F, have 
the values 

U =  1-(1+3p2):, b =  1+(1+3p2):, ~ = 2 .  

Then, substitution of (3.10) into (2.10) with v = 0 followed by integration, and use 
of the initial condition $(x, 0) = 0 (for motions which begin from rest) leads to 

(3.11) $(q ,  t )  = --{( 1 + q )  F(a,  c, c ;  +Q2 (1  + q ) ) } ,  sinwt. 

The results (3.10) and (3.11) represent the solution of the problem under consideration. 
The frequency equation associated with the antisymmetric and symmetric modes 
of oscillations are obtained from the conditions 

$(O,  t )  = 0, u(0,t) = 0, (3.12a, b) 

respectively. We note that the hypergeometric function F in (3.10) and (3.11) admits 
a series representation which, for our present purpose, may be written as 

F ( a ,  b,  c ;  $D2( 1 + 7)) = 1 + c,( l + q )  +c2( 1 + q ) 2  +c3( 1 +q)3  + ..., (3.13a) 

C 

U P  

c =-I 2p2522, c2 =&p2(p2-1)524, c3 =--1 432p (p -1)(3p2-8)sZ8. (3.13b) 

I n  order to obtain the natural frequencies associated with the lowest modes of 
oscillations of water in the basin, we use the series representation ( 3 . 1 3 ~ )  and write 
(3.10) and (3.11) in the form 

u(q,t )  = c { 1 + c l ( l + ~ ) + c 2 ( l + q ) 2 + c 3 ( l  + q ) 3 + . . .  } coswt, ( 3 . 1 4 ~ )  

C 
$ ( q , t )  = -- {[1+c,(l+q)+c2(l+q)2+ ...I 

+ (  1+q)[c,+2c2(l+q)+ ...I+...} sinwt. (3.14b) 

Now, adopting a usual procedure, for small oscillations we consider the predictions 
of (3.14) to the first few (more specifically three) orders of approximation in Q2 and 
calculate the frequencies in accordance with the conditions (3.12a,b). I n  this way, 
for the first approximation, ( 3 . 1 2 ~ )  and (3.12b) give respectively 1 +2c1 = 0 and 
1 +c, = 0; and these, in turn, yield the dimensionless frequencies 

(3.15a, b) 

where the subscript 1 attached to  52 signifies the first approximation of the series 
solution (3.14a,b) and the subscripts a and s refer to  the antisymmetric and 
symmetric modes, respectively. The frequencies (3.15a, b )  are the same as those 
predicted by the classical developments in which the effect of vertical inertia is 
neglected. In particular, they may be obtained (after an adjustment in notation) from 
the leading terms of a solution given by Lamb (1932, p. 276, equation (7)) and they 
can also be deduced directly from the first approximation of a series solution of (2.15). 

For the second and third approximations, the respective frequency equations which 
follow from the conditions (3.12a, b )  are more intricate and their roots in each case 
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must be calculated numerically. These frequency equations, in the case of second 
approximations, are given by : 

pZ(,d - 1) a:, - 4p251ia + 4 = 0 (antisymmetric mode), 

p2(,u2 - 1 ) 52:, - 6pz51i, + 12 = 0 (symmetric mode). 

(3.16a) 

(3.16b) 

Similarly, in the case of the third approximation, we have: 

p2(p2 - 1) (3p2-8) 51%- 27p2(p2- 1)  GI!, + 108p20ia- 108 = 0, 

(antisymmetric mode), (3.17a) 

p2b2 - 1)  (3p2 - 8) 52!, - 36p2(p2 - 1) O:, + 216p251i, - 432 = 0 

(symmetric mode). (3.17b) 

In the expressions (3.16)-(3.17), the subscripts 2 and 3 attached to 51 signify, 
respectively, the second and third approximations in the series solution; and again 
the subscripts a and s refer, respectively, to the antisymmetric and symmetric modes. 

Before considering detailed numerical comparisons of the lowest roots of (3.16a, b) 
and (3.17a, b) with the results (3.15a, b) of the first approximation, it is of interest 
to discuss predictions of (3.15a, b) in the two special caaes (corresponding to the values 
in and in of the angle 6 in figure 2) for which emct solutions are available (Lamb 1932, 
pp. 443-444): 

Forp = 1 (6 = 4 5 O ) ,  52, = 1.O00, 52, = 1.5244 (Kirchhoff 1879) (3.18a,b) 

For p = 3+ (6 = 30°), 0, = 1.OOO (Greenhill 1887). (3.19) 

Although Greenhill attempted to discuss both the symmetric and the antisymmetric 
modes, his solution (Greenhill 1887) is limited to the symmetric mode only; and, in 
the 6th edition of his book, Lamb (1932, p. 444) correctly remarks that the frequency 
for the antisymmetric mode when p = 34 ‘has not yet been determined’. Since then 
several related papers by Sen (1927) and Storchi (1949, 1952) have dealt with the 
exact solutions of special basin profiles but none of these appear to contain a solution 
for the antisymmetric mode of a triangular basin when 6 = in. 

The predictions of the first approximation given by (3.15a, b) for p = 1 when 
compared with the exact solutions (3.18a, b) is better than one would expect from 
a relatively simple theory utilized in the present paper. For p = 1, (3.15a) for the 
antisymmetric mode gives the same value 1.OOO as the exact result (3 .18~~)  while the 
prediction of (3.15b) for the symmetric mode (51, = 1.414) is about 7.2% less than 
the exact value (3.18b). Also, for p = 3f, the prediction of (3.15b) for the symmetric 
mode (51, = 0.816) is about 18.4% below that of the exact value in (3.19). However, 
as will be noted below, the predictions of the second and third approximations of the 
series solution (3.14) in the symmetric mode are much closer to the exact value (3.19). 

The unusually good agreement in the case of the antisymmetric mode for p = 1 
requires some explanation. Indeed, an examination of the coefficients (3.13b) of the 
series representation of the hypergeometric function in (3.13a) indicates that the 
series terminates for p = 1 beyond the first approximation so that the first approx- 
imation in (3.14) for p = 1 is the exact solution of the differential equation (3.7). Since 
the hypergeometric series terminates forp = 1, consideration of higher approximations 
in this case will not yield any new result for either of the two modes of oscillations. 
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In fact, these conclusions or the case of ,u = 1 hold also when the effect of vertical 
inertia is entirely neglected as in the classical developments. (See also the remarks 
following (3.15a, b).) 

Each of the frequency equations (3.16a,b) and (3.17a,b) for p = 1 has only one 
positive root and yields the value of the first approximation (3.15a, b) in line with 
the remarks made in the preceding paragraph. For values of y += 1, the character of 
the roots of (3.16a, b) and (3.17a, b) may be summarized as follows: 

For 0 < y < 1,  

for 1 < y ,  

one real 51 > 0, 
two real 51 > 0. 

( 3 . 1 6 ~ ) :  { 
For 0 < p < 1,  

for 2 < p, 

For 0 < p < 1 and ( ~ 2 . 4 )  < p, 

for 1 < p < ( ~ 2 . 3 ) ,  

For 0 < y < 1 and ( ~ 2 . 3 )  < p, 
for 1 < p <(-2.2),  

one real 51 > 0, 
for 1 < y < 2, two real 51 > 0, 

no real 51. 

one real Q2, 

three real unequal Q2. 

one real Q2, 

three real unequal Q2. 

( 3 . 1 7 ~ ) :  { 
(3.17b): { 

Whenever the frequency equation has more than one real root, we have recorded only 
the lowest root in the tabulated results of tables 1-3 (and also later in tables 4-5). 

Numerical values of the lowest roots in the second and third approximation of the 
series solution (3.14) as well as those of the first approximation (classical results with 
vertical inertia neglected), are tabulated for both the lowest antisymmetric and the 
lowest symmetric modes in tables 1 and 2, respectively. To avoid repetition of a 
display of these calculated results and Sor the reader’s later convenience, we have also 
recorded in tables 1 and 2 the corresponding values of the frequencies calculated in 
$5 from the asymptotic solution of $4. As was noted earlier, there is no real root for 
p > 2 in the symmetric mode of the second approximation (see also the fourth column 
of table 2). Moreover, as indicated in table 3, for y > 34, SZ,, takes a value less than 
1 .OOO and continues to decrease until p N 1.96 and then begins to increase until i t  
assumes again the value 1 .000 fory = 2, beyond which there is no real root. This should 
explain why the values recorded in table 2 for both p = 3:, 2 are 1.000. 

For values of p 2 5 the results in the antisymmetric mode obtained from the 
asymptotic solution (a,,) and the third series approximation (Q3,) are very close. 
In fact, the percentage difference between the values of SZ,, and SZ,, over the range 
31 < y < 10 is less than 5 yo. For values larger than p > 10 the different approximations 
all approach the values predicted by the first approximation (3.15), which is the same 
as the classical result. 

3.2. A parabolic basin 

Consider a symmetric parabolic basin and specify the one-half of its depth profile by 

h(z)=/30( l - f )= /90( l -p2) ,  0 -Zo<x<O,  

h 7 =-2p  07, h,, = -2P0, 

where 7 is defined by (3.6). Substitution of (3.20) in (3.2) leads to 

(3.20 a)  

(3.20 b)  
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8 in 
degrees 

1 .o 

2.0 
3.0 
4.0 
5.0 

10.0 
20.0 

34 
45.000 
30.000 
26.565 
18.435 
14.036 
11.310 
5.711 
2.862 

a,, 
1 .000 
0.577 
0.500 
0.333 
0.250 
0.200 
0.100 
0.050 

Q2, 

1 .Ooo 
0.650 
0.577 
0.408 
0.316 
0.258 
0.135 
0.069 

Q3, 

1 .Ooo 
0.648 
0.571 
0.391 
0.296 
0.238 
0.119 
0.060 

QA, 

1.142 
0.682 
0.593 
0.398 
0.300 
0.240 
0.120 
0.060 

TABLE 1. Comparison of the numerical values of the non-dimensional frequency in the antisymmetric 
mode for a triangular basin of constant slope over the range 1 < p < 20 from various approximations : 
the frequencies Q,,, Qas, Q,, calculated from the first three approximations in the series solution 
(3.14) and a,, calculated from the asymptotic solution (4.20). For each entry in the table, the value 
of angle 8 (defined in figure 2) is also indicated. 

20 

P O  
P = -  

1 .o 

2.0 
3.0 
4.0 
5.0 

10.0 
20.0 

-34 

8 in 
degrees 

45.000 
30.000 
26.565 
18.435 
14.036 
11.310 
5.711 
2.862 

QIS 

1.414 
0.816 
0.707 
0.47 1 
0.354 
0.283 
0.141 
0.07 1 

Q2S 

1.414 
1 .000 
1 .000 

0 3 s  

1.414 
0.987 
0.879 
0.606 
0.457 
0.366 
0.183 
0.091 

1.548 
1.032 
0.910 
0.624 
0.473 
0.380 
0.191 
0.096 

TABLE 2. Comparison of the numerical values of the non-dimensional frequency in the symmetric 
mode for a triangular basin of constant slope over the range 1 < p < 20 from various approximations : 
the frequencies a,,, Qsrs, a,, calculated from the first three approximations in the series solution 
(3.14) and QAs calculated from the asymptotic solution (4.20). For each entry in the table, the value 
of angle 8 (defined in figure 2) is also indicated. 

By a change of the independent variable, namely f = 7 + 1, we seek a series solution 
of (3.21) in the form 00 

U ( f )  = z C n f r + n ,  
n-0 

valid about the singular point r ]  = - 1.  By the usual procedure, after substituting the 
above series in (3.21) and making some rearrangements, we put the coefficient of the 
lowest power of f equal to zero and obtain the indicia1 equation r(r+ 1 )  = 0. Here 
we only need to consider the value r = 0 since the other value r = - 1 gives rise to 
an unbounded solution. Thus, after setting the coefficient co = 1,  we finally obtain 
the expressions 

u(7, t )  = a{ 1 + cl( 1 + 7) + c,( 1 + 7)2+ c3( 1 + r ] ) 3  + . ..} cos wt, (3.22 a )  

M -27[1+ e,(l  +7) + c,( 1 + 7)2+C3(l + 7)3 + ...I 
+ (1  - v2) [cl + 2c,( 1 + 7) + 3c3( 1 + 7)2 + ...I} sin wt, (3.22 b )  
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-3t 
1.76 
1.80 
1.84 
1.88 
1.92 
1.96 
2.00 

a,, 
1 .Ooo 
0.992 
0.982 
0.974 
0.967 
0.964 
0.965 
1 .Ooo 

TABLE 3. Extended calculated results for the frequency R,, of the second 
approximation in table 2 over the range 1 ,< p ,< 2 

1 .o 
1.5 
2.0 
3.0 
4.0 
5.0 

10.0 
20.0 

a,, 
1.141 
0.943 
0.707 
0.471 
0.354 
0.283 
0.141 
0.071 

QZS 

1.155 
0.837 
0.655 
0.453 
0.345 
0.279 
0.141 
0.071 

G a  

1.070 
0.809 
0.644 
0.451 
0.345 
0.278 
0.141 
0.071 

G A S  

1.185 
0.858 
0.663 
0.452 
0.341 
0.274 
0.138 
0.069 

QMS 

1.054 
0.810 
0.645 
0.452 
0.345 
0.278 
0.141 
0.071 

TABLE 4. Comparison of the numerical values of the non-dimensional frequency in the antisym- 
metrical mode for a parabolic basin over the range 1 < p < 20 from various approximations: the 
frequencies a,,, a,,, a,,, calculated from the first three approximations in the series solution (3.22), 
QAs calculated from the asymptotic solution (4.20) and RMa calculated from the variational 
approximation (3.27) of Miles (1985) 

where Mis a constant and the coefficients cl, c2, c3, ..., are: 

(3.23) 

2/Q2 - p= 12/Q4 - 8pz/02 +p2@2-4) 
48/Q4 c1 = 4/Q2 ’ c2 = 

[36/Q2 + 32 - 3p2] c2 - 24c, + 3 
72/02  

c, = 

It should be noted that the expression for the wave height 4 in (3.223) is obtained 
similarly to (3.11), after substitution of ( 3 . 2 2 ~ )  into (2.10) with v = 0 followed by 
integration and the use of the initial condition $(z, 0) = 0. 

For small oscillations, we again consider the first approximation in the series 
solution, retaining terms which involve only c1 in (3.22). For the lowest modes of 
oscillations, the natural frequencies of the first approximation, calculated in accord- 
ance with the conditions (3.12a,b), lead to the solution given by Lamb (1932, p. 277, 
equation (18) with n = 1 and n = 2), i.e. 

2: 64 q,=- B =-. 
P ’  lS P 

(3.24a, 3) 
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1 .o 
1.5 
2.0 
3.0 
4.0 
5.0 

10.0 
20.0 

QI, 

2.449 
1.633 
1.225 
0.816 
0.612 
0.490 
0.245 
0.122 

9 2 s  

1.709 
1.278 
1.025 
0.734 
0.571 
0.467 
0.241 
0.122 

0 3 s  

1.504 
1.193 
0.991 
0.734 
0.576 
0.471 
0.243 
0.122 

QAs 

1.599 
1.322 
1.082 
0.770 
0.591 
0.478 
0.243 
0.122 

TABLE 5. Comparison of the numerical values of non-dimensional frequency in the symmetric mode 
for a parabolic basin over the range 1 Q p Q 20 from various approximations: the frequencies Q,,, 
Gas, a,, calculated from the first three approximations in the series solution (3.22) and Q,, 
calculated from the asymptotic solution (4.20) 

For the second and third approximations, the respective frequency equations which 
follow from the conditions (3.12a, b)  are more intricate and their roots in each case 
must be calculated numerically. In  the case of the second approximation, the 
frequency equations are given by : 

pL2(lu2 - 4) a:, - 14p2Q& + 24 = 0 

p2(p2 - 4) 51&- 20,u251~, + 84 = 0 

(antisymmetric mode), 

(symmetric mode). 

(3 .25~)  

(3.25 b )  

Similarly, in the case of the third approximation, we have: 

p2(3p4-44p2+ 128)51~,-~L2(108~2-304)51~a+ (996p2+48)51i,- 1584 = 0 

(antisymmetric mode), (3 .26~)  

p2(3p4-44p2+ 128) 51&-p2(132p2-400) 51:, + (1764,~~+48)Q&-6480 = 0 

(symmetric mode). (3.26b) 

Again, as in the discussion of $3.1 the subscripts 1, 2, 3 attached to 51 signify, 
respectively, the first, second and third approximations in the series solution; and 
the subscripts a and s refer, respectively, to the antisymmetric and symmetric modes. 
Whenever the frequency equation has more than one real root, we have recorded only 
the lowest root in the tabulated results of tables 4 and 5. 

Before considering a comparison of the numerical values of the various approxim- 
ations, mention should be made of a recent paper by Miles which also briefly deals 
with the free-surface oscillation of a parabolic basin using a variational approxi- 
mation (Miles 1985, paragraph following his equation (4.5b)). His frequency for the 
antisymmetric mode in our notation reads as (the symbols d ,  a, 8 in the paper of Miles 
correspond, respectively, to Po, I , ,  1/11 used here) : 

Q,, = d(luz+i)-r. (3.27) 

Numerical values of the lowest roots of the frequency equations in the second and 
third approximation of the series solution (3.22), as well as the frequencies of the first 
approximation (3.24a, b ) , t  are tabulated for both the lowest antisymmetric and the 
t Recall that these are- the same as the classical results with vertical inertia neglected (Lamb 

1932, p. 277, equation (18) with n = 1 and n = 2). 
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lowest symmetric modes in tables 4 and 5 ,  respectively. To avoid repetition of a 
display of these calculated results and for the reader’s later convenience, we have also 
included in tables 4 and 5 the corresponding values of the frequencies calculated in 
$5 from the asymptotic solution of $4. In addition, in the case of table 4 ,  we have 
recorded the prediction of the frequencies from the variational approximation of Miles 
( 1985). 

For values of p 2 3,  the results in the antisymmetric mode obtained from the 
asymptotic solution (a,,), the variational approximation of Miles (QMJ and the 
series approximation (a,,) are very close. In  fact, the absolute value of the percentage 
difference between the values of Q,, and Q,, (which is also very nearly the same as 
QMa) is less than 3 yo over the range 2 < p < 20. For values larger than p 3 20 the 
different approximations all approach the values predicted by the first approximation 
(3.24), which is the same as the classical result. The comparative accuracy in the 
symmetric mode between QAs and a,, is about the same: the absolute value of the 
percentage difference between QA, and SZ,, is less than 5 % for p = 3,  the percentage 
difference decreases for larger values of p ,  and is less than 3 % for 3.8 < p < 20. 

4. Solution of differential equations (2.13) by asymptotic integration 
In  this section, we confine attention to a class of basin profiles whose equilibrium 

depth varies with x only, and obtain a solution of the differential equations (2.13) 
by asymptotic integration. We specify a class of basin profiles by 

h(7) = (7-70)W h o )  * 0, (4.1) 

where 7 is defined by (3 .6) ,  1, is again a characteristic length in the free surface of 
water such as that indicated in figure 1 and qo is the value of 7 at which h vanishes 
such as the point x = -1, (or 7 = - 1 )  in figure 1. It should be noted here that the 
form (4 .1)  covers a fairly large class of basin profiles. For example, the expression 
(4.1) includes any profile of the form 

h(7) = qn-cn = (7-c) [ y n - 1 + C p 2 + c % p - 3 +  ... +cn-zy]+cn-11, (4.2) 

where c is a constant. 
Assuming a solution which is sinusoidal in time and periodic in the y-direction, we 

write 
( 4 . 3 ~ .  b )  

where both the wavenumber k and the frequency w are constants. Thus, with h 
specified in the form (4 .1) ,  substitution of (4.3u,b) into the system of differential 
equations (2.13a, b)  leads to the following two coupled ordinary differential equations 
Uand V :  

u = U ( z )  cos k y  coswt, v = V ( x )  sinky coswt, 

- [k2h(h-3a)+3]  V = t k h , ( h - 2 ~ )  U+kh(h-3a)  U,, (4.4) 

h(h - 3 ~ )  U,, + 3h,(h- 2 ~ )  U ,  +if[h,,(h- 2 ~ )  - 21 U 
= - i k h , ( h - 2 ~ )  V - k h ( h - 3 ~ )  V,, (4 .5)  

where the constant a is defined by (3.3). 
It is convenient to eliminate V from the above system of equations, thereby 

obtaining a second-order differential equation in U .  Then, (4.4) provides an expression 
for V in terms of U and its derivative U,. In this manner, after introducing a change 
of variable for U defined by 
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the coupled system of equations (5.4)-(5.5) can be reduced to 

r,+b2(71-rlo)-'@1(~)+7(r)}r = 0. (4.7) 

In (4 .7)  the parameterp is again the ratio of a characteristic length 1, to the maximum 
equilibrium depth h,,, of the basin, the coefficient functions and 7 are given by? 

1 
2 

and where 

(4.10) 
aF 
ah 

F(h ,a ,k )  = 3-k2h(3a-h), F'(h,a,k)  = - = - k 2 ( 3 a - 2 h ) .  

It should be noted also that, in obtaining (4 .7) ,  the change of variable (4 .6)  is derived 
under the condition that the resulting differential equation in r (as the dependent 
variable) would not contain the first-order derivative of r .  In  the process of deriving 
(4.7) two possibilities present themselves for the sign of the quantity (3a-h) ,  which 
occurs in both the numerator and denominator of (4.6) and in the solution (4.1 1) given 
below. Here we have specified the sign of (3a- h )  to be positive so that 3a > h. The 
other choice, namely 3a-h < 0 or equivalently w2 > 3g/h, is discarded on physical 
grounds: i t  gives undesirable restrictions in that it allows for the possibility of w2 > 00 

as h+O and also requires that w2 can never be less than a positive number 3g/h for 
non-zero values of h. 

We now turn to a discussion of a solution of (4 .7)  by a method of asymptotic 
integration which is valid at the turning point of ordinary differential equations. For 
a fairly general account of this procedure reference may be made to a recent book 
on the subject by Meyer & Perter (1980). However, for a limited application of this 
procedure to the second-order differential equation (4.7) it  is more convenient to refer 
directly to a paper by Langer (1935). With reference to (4 .7) ,  we note that the function 
$ ' (r] )  is a bounded single-valued analytic function and that the coefficient function 
7(7)  is an analytic function (with respect to r ] )  having a pole of order one at r ]  = vo 
and is, of course, bounded with respect to p (actually 7 is independent of p). 

According to a theorem of Langer (1935)$ there exists a related differential 
equation whose solution is asymptotic to the solution of (4.7) and its domain of 
validity is dependent upon the character of the coefficient functions of r in (4 .7) .  If 
r ]  ranges over an interval which includes the point r0 at which (i) 7(7)  admits a pole 
of first order, (ii) @' is analytic and bounded, then the asymptotic solution mentioned 
will be valid in the entire interval under consideration including r ] o .  

It can then be shown that the two linearly independent solutions of (4.7) are given 
by (the details are similar to the corresponding development in Naghdi 1957) : 

(4.11) 

t Here and elsewhere in $4, for emphasis we use hmar to designate the equilibrium depth at the 

$ A statement of the details of Langer's theorem is summarized in a paper by Naghdi (1957, 
lowest elevation point of the basin instead of Po defined by (2.3). 

pp. 50-51). 
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C,, C2 are arbitrary constants of integration and J, ,  are Bessel functions of the 
first and second kind of order one. It should be noted here that the correction terms 
to the above asymptotic solutions are of the order ,u-2 relative to the solution (4.11) ; 
see, in this connection, Langer (1935, p. 407). 

Since we require the velocities and the amplitude to be finite throughout the domain 
under consideration, we discard the solution r2,  which becomes unbounded as y -+v0 
corresponding to h+O, 5+0. Then, recalling (4.6), the asymptotic solution for U is 

3-(3A- 1 ) P  
(3A - 1)  h4 

U ( x )  = M [  

where we have introduced the notations 

(4.13) 

(4.14a, b)  

M = C ,  (h:aJ - = const. (4.15) 

and C, or equivalently M in (4.15) is a constant. Having obtained the result (4.13), 
the expression for V can be readily calculated from (4.4) and is given by 

[3(2A-l)h, U+2(3A-l)hUZ.. (4.16) 
K 

2[3 - F ( 3 A  - 1 )] 
V ( x )  = 

For a complete discussion of free oscillations of the body of water in the basin, the 
foregoing solution must be supplemented by appropriate boundary and initial 
conditions. One of the boundary conditions (pertaining to boundedness of the velocity 
at 7 = qo) has already been utilized and the initial conditions may be specified by 
either of the following conditions: 

4x9 y, 0) = uo(x, y)  or $@, y, 0) = 40(X> y). (4.17) 

For our present purpose, we set do = 0 but impose no initial conditions on the velocity 
field. This would correspond to the type of oscillations described by Wilson (1972, 
p. 80) such as the impact of the wind gusts on the undisturbed free surface of water. 

With velocities u and v now determined, the solution for the amplitude q5 of the 
free surface can be easily determined from (2.10). We record below the final results: 

(4.18a, b )  u = M O ( z )  cosky coswt, v = M P ( x )  sinky coswt, 

M 
q5 = --{[hO(z)],+KP(x)} cosky sinwt, 

w 

where the functions 0 and f are given by 

'=[ (3A- l )h  

( 4 . 1 8 ~ )  

(4.19a) 

P = +K [3 - P ( 3 A  - 1 )I-' {3(2A - 1)  h, O+ 2(3A - 1 ) ho,}, (4.19b) 

and where in obtaining ( 4 . 1 8 ~ )  we have imposed the initial condition q5 = 0. The 
special case of the above solution for a two-dimensional motion in which v = 0 and 
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u, q5 depend on x, t only can be obtained by setting k = 0. Then, K = 0 by (4.14a) 
and (4.18a, b, c)  reduce to 

M 
u = M O ( x )  coswt, v = 0, q5 = -- [h0(x)lz sinwt, (4.20a, b, c) 

w 

where the function 0 is now given by 

3 
(3A-l)h4 (4.21) 

It is of interest to consider the limiting values of the solution obtained in this section 
when 7+70. We discuss this with reference to the special solution (4.20) but similar 
limiting values can be obtained from the more general results (4.18). Now the factor 
(q -qo) ,  which occurs in h and @J1(LJ (see (4.1) and (4.12)), is present in both the 
numerator and denominator of (4.21) and results in indeterminacy of the limiting 
values of u, h as 7 - f ~ ~ .  However, the limiting values can be obtained by making use 
of the mean-value theorem for integrals. Thus, with the help of (4.12), the recurrence 
relations for Bessel functions and the limiting values of the Bessel functions as [ + O ,  
we obtain the following limiting values of (4.20a, c) : 

(4.22 a) 

(4.223) 

Before closing this section, we elaborate on the implication of the change of variable 
(4.6), where we have assumed that the quantity (3A- 1 )  is strictly positive. This, 
along with an examination of (4.19a, b), suggests that for real and bounded values 
of the functions 0 ( x )  and p(z) in (4.18) we must require that, for all 2, 

3A-1> 0 and 3 - P ( 3 A - l )  > 0. (4.23) 

The restrictions (4.23), together with the definitions (4.14a, b), imply 

3A>l*w2<- ,  39 (4.24) 
h 

3 3w2 
K 2 < - * k 2 <  

3A- 1 3gh - 02h2 ' (4.25) 

which hold for all x (or 7). The quantity 3g/h which occurs in (4.24) attains its 
minimum value when h is a maximum and this corresponds to the value of the cutoff 
frequency (1.10). Corresponding to this cutoff frequency, it can be shown that the 
restriction (4.25) provides a lower bound for the constant wavelength A. More 
specifically, for w2 = ?&, a lower bound for A2 is found to be $c2hkax. It is 
interesting that this value is within the same range as that indicated for basins of 
uniform depth in $1 (compare with (1.7)). 

5. Concluding remarks 

applications of the general solution discussed in $4. 
We close this paper with some numerical examples and remarks pertaining to 
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5.1. Two examples of the asymptotic solution (4.20) 
We consider here the predictions of the asymptotic solution (4.20) for motions in the 
(z, 2)-plane of two basins whose bottom profiles are (i) triangular and (ii) parabolic. 
For each of the two basin profiles, we calculate the lowest frequencies in both the 
antisymmetric and symmetric modes of oscillations. Before carrying out the specific 
calculations, however, it is desirable to obtain general expressions of the frequency 
equations from the solution (4.20a, c )  with the basin's profile left unspecified. To this 
end, we first rewrite the argument f of the Bessel function in (4.21). Thus, using again 
the notation (2.3) and since now k: = 0 in (4.12), we have 

together with 

Then, with the use of (4.20c), the frequency equation for the antisymmetric mode 
obtained from the condition ( 3 . 1 2 ~ )  is found to be 

@ J 1 ( f )  +&,, Jo(f)-+E-;fq J l ( f ) }  = 0 (antisymmetric mode). 
{" h, 

4 h ( 3 ~ - h )  q = o  

(5.3) 

The condition (3.12b) for the symmetric mode requires that 0 given by (4.21) vanish 
at  7 = 0 or equivalently f iJ l ( [ )  = 0 a t  7 = 0. Recalling (4.12), it can be easily verified 
that f =l= 0 at 7 = 0. Hence, the condition (3.12b) implies that 

Jl(f)lq=o = 0 (symmetric mode). (5.4) 

Consider now a triangular basin specified by (3.5) over the interval - 1 < 7 < 0. 
In this case Po = h(r]), where h is defined in (4.1) ; and the frequency equations (5.3), 
after multiplication by 4@/3+, and (5.4) reduce respectively to 

- 

( 5 . 5 4  f o  J1(&J + 3 p [ Q 2 ( 3  -Q2),3 [ f o J O ~ f o ; , >  - i J 1 ( f O ) I  = 0 

and J l ( f 0 )  = 0, (5.5b) 

where the frequency Q is defined by (3.9b) and where f o  is the value o f f  at the 
origin, i.e. 

For a triangular basin (since the slope is constant), the right-hand side of (5.1) can 
be integrated and then by (5.6) the value of f o  is given by 

f o  = 3iplu(sin-' (in2 - 1 ) + $} , (5.7a) 

4 

f o  = f I , = o .  (5-6) 

and this can be inverted in the form 

Q'=~[l-cos&] 2 (5.7 b) 

For the antisymmetric mode, from substitution of ( 5 . 7 ~ )  into ( 5 . 5 ~ )  an equation is 
obtained in Q2 and the frequency Q,, is determined from the lowest root of the latter 
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equation. For the symmetric mode, the lowest root of (5.5 b) is to = 3.831 71 and when 
this is substituted in (5.7b) we calculate SZ,, from 

ag, =;[l-cos 3*831 34.4 

We now turn to a symmetric parabolic basin specified by (3.20) over the interval 
- 1 < 7 < 0. In  this cme E(7) = Po( 1-7) by (4.1) and (5.1) and its derivatives become 

(5.10) 

It can be shown by a straightforward calculation that for a parabolic bottom (5.3) 
takes the form 

and since (go), 4= 0 we arrive at the following frequency equation for the antisym- 
metric mode: 

~ o J o ~ ~ o ~ - ~ J l ~ E o ~  = 0- (5.11) 

For the symmetric mode the frequency equation is still given by (5 .5b) .  
The expression (5.9) is singular at 7 = 0 ;  and, in order to extract the lowest root 

of (5.1 1) and (5.5b) for a parabolic bottom, we need to rewrite the value of at = 0 in 
terms of a suitable representation. This can be effected by writing 6, in terms of the 
complete elliptic integral of the fist kind K (Abramowitz & Stegun 1965, p. 590), i.e. 

go = pQK(+P). (5.12) 

Thus, with the help of (5.12), the values of the frequencies QAa and Q,, are 
determined, respectively, from the lowest roots of (5.11) and (5.5b). The calculated 
results for both the triangular and parabolic basins were summarized in $3 and are 
included in tables 1, 2 and 4, 5. 

(to19 [&Jo(to)-iJ1(Eo)I = 0 

5.2. A canal of variable section 
Consider a canal of an indefinite extent along its length, with its cross-sectional plane 
coincident with the (z,z)-plane of the coordinate axes (z, y, z )  and its length along 
the y-direction. For a canal of this kind, the propagation of a travelling wave in the 
y-direction is discussed in Lamb (1932, p. 366) when the depth of the canal is uniform. 
We indicate here a generalization of Lamb's result to a canal of variable depth, by a 
slight reinterpretation of the solution in 54. Thus, in the context of three-dimensional 
wave motion, consider a wave travelling in the y-direction with velocities u and v 
given by 

(5.13) 

After integrating (2.10) with respect to t, apart from the arbitrary function of 
integration, the amplitude is found to be of the form 

u(z, y, t )  = M @ )  cos (ky-ut ) ,  v ( z ,  y, t )  = M v ( z )  sin (ky-ut). 

(5.14) 
M 

@(z,y,t) = ; { (h@)) ,+kf (x ) }  sin(ky-wt). 
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An important feature of (5.14) is the dependence of the amplitude on the variation 
with depth; and, of course, the solution remains valid a t  an end point of the 
cross-sectional plane, where the depth is zero. 

5.3. The nature of solutions for other basins 
The application of the general solution in $4 to a basin for which the depth h is zero 
at one end (corresponding to the end point of a sloping beach) is by now obvious.t 
In  particular, for basins of any profile - not necessarily parabolic - which are 
symmetric about the z-axis, mathematically i t  will suffice to consider one-half of the 
basin profiles (with one end at which h = 0) as illustrated in $5.1. However, the 
solution in $4 may be applied also to  basins with two sloping beaches for which the 
end points at which h = 0 are not necessarily symmetric about the z-axis. In  order 
to consider oscillations over a basin with two sloping beaches, it  is mathematically 
more convenient to divide the basin into two separate parts each with a different 
sloping beach, and then obtain solutions corresponding to each part with the previous 
procedure. After obtaining these solutions, the final results are obtained with the use 
of continuity condition at the separation section. 

We thank D. J. Nikkel for carrying out the numerical calculations summarized in 
$4 of the paper. The results reported here were obtained in the course of research 
supported by the Fluid Mechanics Program of the US Office of Naval Research under 
Contract N00014-76-0474, Project NR 062-534 with the University of California, 
Berkeley. 
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